
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2020

A Recommender System

Obvious Applications
We are now advanced enough that we can aspire to a serious application. One of the
most significant applications for some very large websites (Netflix, Amazon, etc.) are
recommender systems.

“Customers who bought this product also bought these.”

“Here are some movies you might like…”

As well as many types of targeted advertising. However those of you with less
commercial ambitions will find the core concepts here widely applicable to many types
of data that require dimensionality reduction techniques.

Let’s go all Netflix

1) https://en.wikipedia.org/wiki/Netflix_Prize

Netflix once (2009) had a $1,000,000 contest to with just this very problem(1). We will start
with a similar dataset. It looks like:

Movie Dataset (Movie ID, Title, Genre):
31,Dangerous Minds (1995),Drama
32,Twelve Monkeys (a.k.a. 12 Monkeys) (1995),Mystery|Sci-Fi|Thriller
34,Babe (1995),Children|Drama

Ratings Dataset (User ID, Movie ID, Rating, Timestamp):
2,144,3.0,835356016
2,150,5.0,835355395
2,153,4.0,835355441
2,161,3.0,835355493

We won’t use the genres or timestamp fields for our analysis.

Starting Point

What we are given is a large, and very sparse, list of ratings for users:

5 3 1

1

3 5

3 3 3

2 4 5 5

Movies

U
se

rs

Objective
For any given user we would like to use their ratings, in combination with all the existing user
ratings, to determine which movies they might prefer. For example, a user might really like
Annie Hall and The Purple Rose of Cairo (both Woody Allen movies, although our database
doesn’t have that information). Can we infer from other users that they might like Zelig? That
would be finding a latent variable. These might also include affinities for an actor, or director,
or genre, etc.

3 5 2 3 5 2 4 3 1 4 3 1 3 2 1

1 4 1 3 2 1 3 2 5 5 3 4 3 4 1

1 3 5 3 3 5 5 4 2 2 2 5 4 3 3

4 1 2 4 2 3 5 2 3 1 1 3 1 2 3

2 2 4 1 4 4 3 5 1 2 4 5 2 5 4

Movies

U
se

rs

Lossy Compression Becomes Approximate Solution

The process of compressing this matrix to a reasonable size is also going to provide us a
means to construct its missing members.

UR PX

We are going to approximate our given, sparse, R matrix as the product of two smaller
matrices. You can consider them a user feature matrix and an product feature matrix. This
approximation is also going to smooth out the zeros and in the process give us our projected
ratings.

Matrix Factorization
There are different ways to decompose a matrix. We will approximate this matrix as the
product of two smaller matrices. The rank, k, of the new matrices will determine how
accurate this approximation will be.

UR
PX

k

k

Why are we getting this two-for-one?

This provides an excellent introduction to a profound perspective on Machine Learning.

UR PX

One way of thinking about learning is that we are compressing everything we know about
the world into a smaller representation. Sometimes, but not usually, this can be seen
explicitly.

You can do this too.
Let's say you worked in a 1990's video store, but had never heard of Steven Spielberg. If you
paid careful attention to the rental records you might notice that many people that rented E.T.
also rented Raiders of the Lost Ark and Jaws and Close Encounters and Jurassic Park. So if a
customer told you they really enjoyed an Indiana Jones movie, you might suggest they try
Jurassic Park. All without knowing who the director was. You have inferred a hidden
connection (latent effect).

One can imaging many such hidden categories in our movie data: actors, genres, release
dates, etc.

You can also imagine that the renters themselves possess these preferences hidden in their
own data. Without it being explicitly noted, we might easily see that Mary likes
documentaries and Joe loves movies with Cher.

We are thinking of reduced ways to represent these people ("likes documentaries")
vs. the raw data!

Matrix Factorization
The rank k can now also be thought of as the number of latent effects we are incorporating.
But it will not be as intuitively explicit as a simple category, and we will have to investigate an
optimal size for this parameter.

UR
PX

k

k

Defining our error

In ML, defining the error (or loss, or cost) is often the core of defining the objective solution.
Once we define the error, we can usually plug it into a canned solver which can minimize it.
Defining the error can be obvious, or very subtle, or have multiple acceptable methods.

Clustering: For k-means we simply used the geometrical distance. It was actually the sum of
the squared distances, but you get the idea.

Image Recognition: If our algorithm tags a picture of a cat as a dog, is that a larger error than
if it tags it as a horse? Or a car? How would you quantify these?

Recommender: We will take the Mean Square Error distance between our given matrix and
our approximation as a starting point.

Mean Square Error plus Regularization

We will also add a term to discourage overfitting by damping large elements of U or P. This is
called regularization and versions appear frequently in error functions.

Error = R – UxP 2 + (Penalty for large elements)

The notation means “sum the squares of all the elements and then take the square root”.

You may wonder how we can have “too little” error – the pursuit of which leads to overfitting.
Think back to our clustering problem. We could drive the error as low as we wanted by adding
more clusters (up to 5000!). But we weren’t really finding new clusters. Variations of this
phenomena occur throughout machine learning.

Overfitting

One solution is to keep using

higher order terms, but to

penalize them. These

regularization hyperparameters

that enable our solution to have

good generalization will show

up again in our workshop, and

throughout your machine

learning endeavors.

Think of this as Occam's Razor

for machine learning.

Mean Square Error plus Regularization
Here is exactly our error term with regularization. MLLIB scales this factor for us based on the
number of ratings (this tweak is called ALS-WR).

Error = R – UxP 2 + (U2 + P2)

The notation means “sum the squares of all the elements and then take the square root”.

Additionally, we need to account for our missing (unrated) values. We just zero out those
terms. Here it is term-by-term:

Error = I,j wI,j (RI,j – (UxP)ij)
2 + (U2 + P2) wI,j =0 if RI,j is unknown

Note that we now have two hyperparameters, k and , that we need to select intelligently.

Alternating Least Squares
To actually find the U and P that minimize this error we need a solving algorithm.

SGD, a go-to for many ML problems and one we will use later, is not practical for billions of
parameters, which we can easily reach with these types of problems. We are dealing with
Users X Items elements here.

Instead we use Alternating Least Squares (ALS), also built into MLLIB.

• Alternating least squares cheats by holding one of the arrays constant and then doing a
classic least squares fit on the other array parameters. Then it does this for the other array.

• This is easily parallelized.

• It works well with sparse inputs. The algorithm scales linearly with observed entries.

Here Is Our Plan

U
PX

Given

Ratings

Sparse

Use

ALS

Predicted

Ratings

Dense

=

Training, Validation and Test Data

We use the training data to create our solution, the UxP matrix here.

The validation data is used to verify we are not overfitting: to stop training after

enough iterations, to adjust or k here, or to optimize the many other

hyperparameters you will encounter in ML.

The test data must be saved to judge our final solution.

Reusing, or subtly mixing, the training, validation and test data is a frequently cause of

confusion.

What proportions of your data to use for each of these is somewhat empirical and you

might want to start by copying from similar work or examples using your same solver.

There are techniques to slice-

and-cycle share the training

and validation data, called

cross-validation. Don't try this

with the test data!

Where does our data come into play?

U
PX

Given

Ratings

Sparse

Use

ALS
Predicted

Ratings

Dense

=

Training
Data

k

Training
Data

Validation
Data

Test
Data

Validation
Data

Test
Data

Let’s Build A Recommender
We have all the tools we need, so let’s fire up PySpark and create a scalable recommender.
Our plan is:

1. Load and parse data files
2. Create ALS model
3. Train it with varying ranks (k) to find reasonable hyperparameters

4. Add a new user
5. Get top recommendations for new user

____ __
/ __/__ ___ _____/ /__

_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 3.0.0-preview2

/_/

Using Python version 3.7.4 (default, Aug 13 2019 20:35:49)
SparkSession available as 'spark'.
>>>
>>> ratings_raw_RDD = sc.textFile('ratings.csv')
>>> ratings_RDD = ratings_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))
>>>
>>> training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)
>>>
>>> predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
>>> predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))

Building a Recommender

We load in the ratings file and parse out the (user,movie,rating) data.

We then split it training, validation and test data RDDs.

Then we strip the ratings off the validation and test data for our prediction RDDs.

>>> training_RDD.take(4)
[(1, 1029, 3.0), (1, 1061, 3.0), (1, 1263, 2.0), (1, 1371, 2.5)]
>>> predict_validation_RDD.take(4)
[(1, 1129), (1, 1172), (1, 1405), (1, 2105)]
>>>

login06% interact
...
r288%
r288% module load spark
r288% pyspark

____ __
/ __/__ ___ _____/ /__

_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> ratings_raw_RDD = sc.textFile('ratings.csv')
>>> ratings_RDD = ratings_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))
>>>
>>> training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)
>>>
>>> predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
>>> predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))
>>>
>>>
>>> from pyspark.mllib.recommendation import ALS
>>> import math
>>>
>>> seed = 5
>>> iterations = 10
>>> regularization = 0.1
>>> trial_ranks = [4, 8, 12]
>>> lowest_error = float('inf')

Import mllib and set some variables we are about to use.

>>> ratings_raw_RDD = sc.textFile('ratings.csv')
>>> ratings_RDD = ratings_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))
>>>
>>> training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)
>>>
>>> predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
>>> predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))
>>>
>>>
>>> from pyspark.mllib.recommendation import ALS
>>> import math
>>>
>>> seed = 5
>>> iterations = 10
>>> regularization = 0.1
>>> trial_ranks = [4, 8, 12]
>>> lowest_error = float('inf')
>>>
>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614
>>>
>>> print('The best rank is size', best_k)
The best rank is size 4

Run our ALS model on various ranks to see which is best.

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

The ALS.train() routines gives us:

>>> model.predictAll(predict_validation_RDD).take(2)
[Rating(user=463, product=4844, rating=2.7640960482284322), Rating(user=380, product=4844, rating=2.399938320644199)]

To do the "RMS error" math, we want elements with a (Given,Predicted) value for each (User,Movie) key:

>>> ratings_and_preds_RDD.take(2)
[((119, 145), (4.0, 2.903215714486778)), ((407, 5995), (4.5, 4.604779028840272))]

So the next two lines get us from here to there.

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

>>> model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2])).take(2)
[((463, 4844), 2.7640960482284322), ((380, 4844), 2.399938320644199)]

That map gets us to a pair RDD with [(User,Movie), rating] format.

Now do this with the validation RDD:

>>> validation_RDD.take(2)
[(1, 1129, 2.0), (1, 1172, 4.0)]
>>>
>>> validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).take(2)
[((1, 1129), 2.0), ((1, 1172), 4.0)]

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

To collect rating values for common (User,Movie) keys calls for a join()

Data before join:

>>> predictions_RDD.take(2)
[((463, 4844), 2.7640960482284322), ((380, 4844), 2.399938320644199)]
>>>
>>> validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).take(2)
[((1, 1129), 2.0), ((1, 1172), 4.0)]

Results of join:

>>> ratings_and_preds_RDD.take(2)
[((119, 145), (4.0, 2.903215714486778)), ((407, 5995), (4.5, 4.604779028840272))]

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614
>>>
>>> print('The best rank is size', best_k)
The best rank is size 4
>>>
>>> model = ALS.train(training_RDD, best_k, seed=seed, iterations=iterations, lambda_=regularization)
>>> predictions_RDD = model.predictAll(predict_test_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = test_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For testing data the RMSE is %s' % (error))
For testing data the RMSE is 0.9406803213698973

This is our fully tested model (smallest dataset).
These results were reported against the test_RDD.

.

.

.
>>>
>>> new_user_ID = 0
>>> new_user = [

(0,100,4), # City Hall (1996)
(0,237,1), # Forget Paris (1995)
(0,44,4), # Mortal Kombat (1995)
(0,25,5), # etc....
(0,456,3),
(0,849,3),
(0,778,2),
(0,909,3),
(0,478,5),
(0,248,4)
]

>>>
>>> new_user_RDD = sc.parallelize(new_user)
>>>
>>> updated_ratings_RDD = ratings_RDD.union(new_user_RDD)
>>>
>>> updated_model = ALS.train(updated_ratings_RDD, best_rank, seed=seed, iterations=iterations,
lambda_=regularization)
>>>

Adding a User

I checked that ID 0 is unused with a quick
ratings_RDD.filter(lambda x: x[0]=='0').count()"

Note that we are joining, and then training, with ALL data

now - the ratings RDD. We are confident we know what

we are doing and are done testing.

.

.

.
>>>
>>> movies_raw_RDD = sc.textFile('movies.csv')
>>> movies_RDD = movies_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),tokens[1]))
>>>
>>> new_user_rated_movie_ids = map(lambda x: x[1], new_user)
>>> new_user_unrated_movies_RDD = movies_RDD.filter(lambda x: x[0] not in new_user_rated_movie_ids).map(lambda x: (new_user_ID, x[0]))
>>> new_user_recommendations_RDD = updated_model.predictAll(new_user_unrated_movies_RDD)

Let’s get some predictions…

>>> new_user_unrated_movies_RDD.take(3)
[(0, 1), (0, 2), (0, 3)]
>>> new_user_recommendations_RDD.take(2)
[Rating(user=0, product=4704, rating=3.606560950463134), Rating(user=0, product=4844, rating=2.1368358868224036)]

.

.

.
>>>
>>> product_rating_RDD = new_user_recommendations_RDD.map(lambda x: (x.product, x.rating))
>>> new_user_recommendations_titled_RDD = product_rating_RDD.join(movies_RDD)
>>> new_user_recommendations_formatted_RDD = new_user_recommendations_titled_RDD.map(lambda x: (x[1][1],x[1][0]))
>>>
>>> top_recomends = new_user_recommendations_formatted_RDD.takeOrdered(10, key=lambda x: -x[1])
>>> for line in top_recomends: print (line)
...
(u'Maelstr\xf6m (2000)', 6.2119957527973355)
(u'"King Is Alive', 6.2119957527973355)
(u'Innocence (2000)', 6.2119957527973355)
(u'Dangerous Beauty (1998)', 6.189751978239315)
(u'"Bad and the Beautiful', 6.005879185976944)
(u"Taste of Cherry (Ta'm e guilass) (1997)", 5.96074819887891)
(u'The Lair of the White Worm (1988)', 5.958594728894122)
(u"Mifune's Last Song (Mifunes sidste sang) (1999)", 5.934820295566816)
(u'"Business of Strangers', 5.899232655788708)
>>>
>>> one_movie_RDD = sc.parallelize([(0, 800)]) # Lone Star (1996)
>>> rating_RDD = updated_model.predictAll(one_movie_RDD)
>>> rating_RDD.take(1)
[Rating(user=0, product=800, rating=4.100848893773136)]

Let see some titles

>>> new_user_recommendations_titled_RDD.take(2)
[(111360, (1.0666741148393921, u'Lucy (2014)')), (49530, (1.8020006042285814, u'Blood Diamond (2006)'))]
>>> new_user_recommendations_formatted_RDD.take(2)
[(u'Lucy (2014)', 1.0666741148393921), (u'Blood Diamond (2006)', 1.8020006042285814)]

Looks like we can sort
by value after all!

Behind the scenes
takeOrdered() just does
the key/value swap and
SortByKey that we
previously did
ourselves.

Exercises

1) We noticed that out top ranked movies have ratings higher than 5. This makes perfect sense as there is no ceiling
implied in our algorithm and one can imagine that certain combinations of factors would combine to create “better
than anything you’ve seen yet” ratings.

Maybe you have a friend that really likes Anime. Many of her ratings for Anime are 5. And she really likes Scarlett
Johansson and gives her movies lots of 5s. Wouldn’t it be fair to consider her rating for Ghost in the Shell to be a 7/5?

Nevertheless, we may have to constrain our ratings to a 1-5 range. Can you normalize the output from our
recommender such that our new users only sees ratings in that range?

2) We haven’t really investigated our convergence rate. We specify 10 iterations, but is that reasonable? Graph your
error against iterations and see if that is a good number.

3) I mentioned that our larger dataset does benefit from a rank of 12 instead of 4 (as one might expect). The larger
datasets (ratings-large.csv and movies-large.csv) are available to you in ~training/LargeMovies. Prove that the error is
less with a larger rank. How does this dataset benefit from more iterations? Is it more effective to spend the
computation cycles on more iterations or larger ranks?

