
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2020

Deep Learning
In An Afternoon

Deep Learning / Neural Nets
Without question the biggest thing in ML and computer science right now. Is the hype
real? Can you learn anything meaningful in an afternoon? How did we get to this point?

The ideas have been around for decades. Two components came together in the past
decade to enable astounding progress:

• Widespread parallel computing (GPUs)

• Big data training sets

Two Perspectives
There are really two common ways to view the fundaments of deep learning.

• Inspired by biological models.

• An evolution of classic ML techniques (the perceptron).

They are both fair and useful. We’ll give each a thin slice of our attention before we move on
to the actual implementation. You can decide which perspective works for you.

Modeled After The Brain

As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer

Linear

Network

Hidden Layers

Nonlinear

Courtesy: Chris Olah

Basic NN Architecture

Input Layer Hidden Layer Output Layer

Synapse

Neuron

In Practice

How many

inputs?

How deep?

How many

outputs?

For an image it

could be one

(or 3) per pixel.

Might be an

entire image.

100+ layers

have become

common.

Or could be

discreet set of

classification

possibilities.

Woman

House

Airplane

Cat

Inference
The "forward" or thinking step

0.5

0.9

-0.3

H1

H2

H3

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

Activation Function
Neurons apply activation functions at these summed inputs. Activation functions

are typically non-linear.

• The Sigmoid function produces a value between 0 and 1, so it is intuitive

when a probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and

is equal to the input when the input is positive. Rectified Linear activation

functions are currently the most popular activation function as they are more

efficient than the sigmoid or hyperbolic tangent.

• Sparse activation: In a randomly initialized network, only 50% of

hidden units are active.

• Better gradient propagation: Fewer vanishing gradient problems

compared to sigmoidal activation functions that saturate in both

directions.

• Efficient computation: Only comparison, addition and multiplication.

• There are Leaky and Noisy variants.

Inference

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13

H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96

H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

Inference

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35

O1 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = Sig(*Sig() = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.

Biases

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.8 3.2 -0.3) = Sig(*Sig() = .14 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

It is also very useful to be able to offset our inputs by some constant. You can think of this as
centering the activation function, or translating the solution (next slide). We will call this
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with bias=0.1:

+

0.1

0.1

0.1

Bias

Linear + Nonlinear
The magic formula for a neural net is that, at each layer, we apply linear operations (which
look naturally like linear algebra matrix operations) and then pipe the final result through
some kind of final nonlinear activation function. The combination of the two allows us to do
very general transforms.

The matrix multiply provides the skew,
rotation and scale.

The bias provides the translation.

The activation function provides the
warp.

Linear + Nonlinear
These are two very simple networks untangling spirals. Note that the second does not
succeed. With more substantial networks these would both be trivial.

Courtesy: Chris Olah

Width of Network
A very underappreciated fact about networks is that the width of any layer determines how
many dimensions it can work in. This is valuable even for lower dimension problems. How
about trying to classify (separate) this dataset:

Can a neural net do this with twisting and deforming? What good does it do to have more
than two dimensions with a 2D dataset?

Courtesy: Chris Olah

Working In Higher Dimensions
It takes at least 3 units wide to pull this off, regardless of depth.

Greater depth allows us to stack these operations, and can be very effective. The gains from
depth are harder to characterize.

Trying Success Success in 3D

Courtesy: Chris Olah

Theoretically

Universal Approximation Theorem: A 1-hidden-layer feedforward network of this type can
approximate any function1, given enough width2.

Not really that useful as:

• Width could be enormous.

• Doesn't tell us how to find the correct weights.

1) Borel measurable. Basically, mostly continuous and bounded.
2) Could be exponential number of hidden units, with one unit required for each distinguishable input configuration.

Training Neural Networks

So how do we find these magic weights? We want to minimize the error on our training data.
Given labeled inputs, select weights that generate the smallest average error on the outputs.

We know that the output is a function of the weights: E(w1,w2,w3,...i1,...t1,...). So to figure out
which way, and how much, to push any particular weight, say w3, we want to calculate 𝜕𝐸

𝜕𝑤3

There are a lot of dependencies going on here. It isn't obvious
that there is a viable way to do this in very large networks.

0.5

0.9

-

0.3

.13

.96

.40

.35

.85

0.9

I

T

Ground

Truth

For Sigmoid

w O

If we take one small piece, it doesn't look so bad.

Note that the role of the gradient, , here means
that it becomes a problem if it vanishes. This is an
issue for very deep networks.

𝜕𝐸

𝜕𝑤3

Backpropagation

If we use the chain rule repeatedly across layers we can work our way backwards from the
output error through the weights, adjusting them as we go. Note that this is where the
requirement that activation functions must have nicely behaved derivatives comes from.

This technique makes the weight inter-dependencies much more tractable. An elegant
perspective on this can be found from Chris Olah at

http://colah.github.io/posts/2015-08-Backprop .

With basic calculus you can readily work through the details. You can find an excellent
explanation from the renowned 3Blue1Brown at

https://www.youtube.com/watch?v=Ilg3gGewQ5U .

You don't need to know the details, and this is all we have time to say, but you certainly can
understand this fully if your freshman calculus isn't too rusty and you have some spare time.

http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U

Solvers
However, even this efficient process leaves us with potentially many millions of simultaneous equations to solve (real
nets have a lot of weights). They are non-linear to boot. Fortunately, this isn't a new problem created by deep learning,
so we have options from the world of numerical methods.

The standard has been gradient descent. Methods, often
similar, have arisen that perform better for deep learning
applications. TensorFlow will allow us to use these
interchangeably - and we will.

Most interesting recent methods incorporate momentum to
help get over a local minimum. Momentum and step size are
the two hyperparameters we will encounter later.

Nevertheless, we don't expect to ever find the actual global
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and
then repeating with another mini-batch.

Wikipedia Commons

Ready To Play Along?

Make sure you are on a GPU node:

br006% interact -gpu
gpu46%

Load the TensorFlow 2 Container:

[urbanic@gpu046 ~]$ module load singularity
[urbanic@gpu046 ~]$ singularity shell --nv /pylon5/containers/ngc/tensorflow_20.02-tf2-py3.sif

And start TensorFlow:

Singularity> python
Python 3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
>>> ...some congratulatory noise...
>>>

Two Other Ways To Play Along

From inside the container, and in the right example directory,run the python
programs from the command line:

gpu46% python CNN.py

or invoke them from within the python shell:

>>> exec(open("./CNN.py").read())

The API is well
documented.

That is terribly
unusual.

Take advantage and
keep a browser open

as you develop.

Documentation

MNIST
We now know enough to attempt a problem. Only because the TensorFlow framework, and
the Keras API, fills in a lot of the details that we have glossed over. That is one of its functions.

Our problem will be character recognition. We will learn to read handwritten digits by training
on a large set of 28x28 greyscale samples.

First we’ll do this with the simplest possible model just to show how the TensorFlow
framework functions. Then we will gradually implement our way to a quite sophisticated and
accurate convolutional neural network for this same problem.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Getting Into MNIST

matplotlib bonus insight

import matplotlib.pyplot as plt

lt.imshow(train_images[2], cmap=plt.get_cmap('gray'),
interpolation='none')
plt.title("Digit: {}".format(train_labels[2]))

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Defining Our Network

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

Starting from zero?

In general, initialization values are
hard to pin down analytically.
Values might help optimization but
hurt generalization, or vice versa.

The only certainty is you need to
have different values to break the
symmetry, or else units in the
same layer, with the same inputs,
would track each other.

Practically, we just pick some
"reasonable" values.

model.summary()

Layer (type) Output Shape Param #
===
dense_6 (Dense) (None, 64) 50240

dense_7 (Dense) (None, 64) 4160

dense_8 (Dense) (None, 10) 650
===
Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0

Cross Entropy Loss & Softmax

Why Softmax?

The values coming out of our matrix operations can have large, and negative
values. We would like our solution vector to be conventional probabilities that
sum to 1.0. An effective way to normalize our outputs is to use the popular
Softmax function. Let's look at an example with just three possible digits:

Digit Output Exponential Normalized

0 4.8 121 .87
1 -2.6 0.07 .00
2 2.9 18 .13

Given the sensible way we have constructed these outputs, the Cross Entropy Loss
function is a good way to define the error across all possibilities. Better than
squared error, which we have been using until now. It is defined as - y_ log y,
or if this really is a 0, y_=(1,0,0), and

-1log(0.87) - 0log(0.0001) - 0log(0.13) = -log(0.87) = -0.13

You can think that it "undoes" the Softmax, if you want.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Training

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

history = model.fit(train_images, train_labels, batch_size=128, epochs=40, verbose=1, validation_data=(test_images, test_labels))

Train on 60000 samples, validate on 10000 samples
Epoch 1/40
60000/60000 [==============================] - 1s 16us/sample - loss: 0.3971 - accuracy: 0.8889 - val_loss: 0.2003 - val_accuracy: 0.9386
Epoch 2/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.1696 - accuracy: 0.9503 - val_loss: 0.1430 - val_accuracy: 0.9562
Epoch 3/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.1224 - accuracy: 0.9631 - val_loss: 0.1218 - val_accuracy: 0.9614
Epoch 4/40
60000/60000 [==============================] - 1s 9us/sample - loss: 0.0972 - accuracy: 0.9715 - val_loss: 0.1109 - val_accuracy: 0.9657
Epoch 5/40
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0813 - accuracy: 0.9758 - val_loss: 0.0986 - val_accuracy: 0.9700
Epoch 6/40
60000/60000 [==============================] - 1s 11us/sample - loss: 0.0683 - accuracy: 0.9796 - val_loss: 0.1035 - val_accuracy: 0.9683
....
....
Epoch 38/40
60000/60000 [==============================] - 1s 12us/sample - loss: 0.0064 - accuracy: 0.9978 - val_loss: 0.1632 - val_accuracy: 0.9699
Epoch 39/40
60000/60000 [==============================] - 1s 10us/sample - loss: 0.0027 - accuracy: 0.9993 - val_loss: 0.1384 - val_accuracy: 0.9750
Epoch 40/40
60000/60000 [==============================] - 1s 9us/sample - loss: 6.8242e-04 - accuracy: 0.9999 - val_loss: 0.1390 - val_accuracy: 0.9755

Results
matplotlib bonus insight

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

history = model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Let's Go Wider

....

....
Epoch 30/30
60000/60000 [==============================] - 2s 32us/sample - loss: 0.0083 - accuracy: 0.9977 - val_loss: 0.1027 - val_accuracy: 0.9821

Wider Results

Wider

model.summary()

Layer (type) Output Shape Param #
===
dense_18 (Dense) (None, 512) 401920

dense_19 (Dense) (None, 512) 262656

dense_20 (Dense) (None, 10) 5130
===
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

55,050 for 64 Wide Model

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 784)
test_images = test_images.reshape(10000, 784)

test_images = test_images.astype('float32')
train_images = train_images.astype('float32')

test_images /= 255
train_images /= 255

model = tf.keras.Sequential([
tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),

])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

history = model.fit(train_images, train_labels, batch_size=128, epochs=30, verbose=1, validation_data=(test_images, test_labels))

Maybe Deeper?

....

....
60000/60000 [==============================] - 3s 45us/sample - loss: 0.0119 - accuracy: 0.9967 - val_loss: 0.1183 - val_accuracy: 0.9800

Wide And Deep Results

Deep and Wide

model.summary()

Layer (type) Output Shape Param #
===
dense_24 (Dense) (None, 512) 401920

dense_25 (Dense) (None, 512) 262656

dense_26 (Dense) (None, 512) 262656

dense_27 (Dense) (None, 10) 5130
===
Total params: 932,362
Trainable params: 932,362
Non-trainable params: 0

Recap

FC 64,64 97.5

FC 512,512 98.2

FC 521,512,512 98.0

Image Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

AlexNet won the 2012 ImageNet LSVRC and changed the DL world.

CONV 11x11/ReLU

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU

CONV 3x3ReLU

CONV 3x3/ReLU

MAX POOLING

FULL 4096/ReLU

4M

16M

37M

442K

1.3M

884K

307K

35K

Image Recognition Done Right: CNNs

Convolution

Convolution
Boundary and Index Accounting

Straight Convolution

+ =

Edge Detector

Images: Wikipedia

Simplest Convolution Net

Courtesy: Chris Olah

Stacking Convolutions

Courtesy: Chris Olah

C

o

n

v

o

l

u

t

i

o

n

From the very nice
Stanford CS231n

course at
http://cs231n.gith
ub.io/convolution

al-networks/

Stride = 2

http://cs231n.github.io/convolutional-networks/

Convolution Math

Each Convolutional Layer:

Inputs a volume of size WI×HI×DI (D is depth)

Requires four hyperparameters:

Number of filters K

their spatial extent N

the stride S

the amount of padding P

Produces a volume of size WO×HO×DO

WO = (WI − N + 2P) / S+1

HO = (HI −F +2P) / S+1

DO = K

This requires N⋅N⋅DI weights per filter, for a total of N⋅N⋅DI⋅K weights and K biases

In the output volume, the d-th depth slice (of size WO × HO) is the result of performing a convolution of the d-

th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling

Courtesy: Chris Olah

A Groundbreaking Example

Among the several novel techniques combined in this work (such
as aggressive use of ReLU), they used dual GPUs, with different
flows for each, communicating only at certain layers. A result is
that the bottom GPU consistently specialized on color
information, and the top did not.

These are the 96 first layer 11x11 (x3, RGB, stacked here) filters from AlexNet.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(100, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Let's Start Small

....

....
Epoch 10/10
60000/60000 [==============================] - 12s 198us/sample - loss: 0.0051 - accuracy: 0.9989 - val_loss: 0.0424 - val_accuracy: 0.9874

Early CNN Results

Primitive CNN

model.summary()
__
Layer (type) Output Shape Param #
==
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
__
max_pooling2d_1 (None, 13, 13, 32) 0
__
flatten_1 (Flatten) (None, 5408) 0
__
dense_38 (Dense) (None, 100) 540900
__
dense_39 (Dense) (None, 10) 1010
==
Total params: 542,230
Trainable params: 542,230
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Scaling Up The CNN

....

....
Epoch 15/15
60000/60000 [==============================] - 34s 566us/sample - loss: 0.0052 - accuracy: 0.9985 - val_loss: 0.0342 - val_accuracy: 0.9903

Deeper CNN Results

Deeper CNN

model.summary()
__
Layer (type) Output Shape Param #
==
conv2d_4 (Conv2D) (None, 26, 26, 32) 320
__
conv2d_5 (Conv2D) (None, 24, 24, 64) 18496
__
max_pooling2d_3 (None, 12, 12, 64) 0
__
flatten_3 (Flatten) (None, 9216) 0
__
dense_42 (Dense) (None, 128) 1179776
__
dense_43 (Dense) (None, 10) 1290
==
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

Dropout

As we know by now, we need some form of
regularization to help with the overfitting. One
seemingly crazy way to do this is the relatively new
technique (introduced by the venerable Geoffrey
Hinton in 2012) of Dropout.

Some view it as an ensemble method that trains multiple data models simultaneously. One neat perspective
of this analysis-defying technique comes from Jürgen Schmidhuber, another innovator in the field; under
certain circumstances, it could also be viewed as a form of training set augmentation: effectively, more and
more informative complex features are removed from the training data.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')

]))

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

CNN With Dropout

Parameter is fraction to drop.

....

....
Epoch 15/15
60000/60000 [==============================] - 40s 667us/sample - loss: 0.0187 - accuracy: 0.9935 - val_loss: 0.0301 - val_accuracy: 0.9919

Help From Dropout

Dropout CNN

model.summary()

Layer (type) Output Shape Param #
===
conv2d_12 (Conv2D) (None, 26, 26, 32) 320

conv2d_13 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_7 (None, 12, 12, 64) 0

dropout_4 (Dropout) (None, 12, 12, 64) 0

flatten_7 (Flatten) (None, 9216) 0

dense_50 (Dense) (None, 128) 1179776

dropout_5 (Dropout) (None, 128) 0

dense_51 (Dense) (None, 10) 1290
===
Total params: 1,199,882
Trainable params: 1,199,882
Non-trainable params: 0

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

CNN with Dropout 99.2

Batch Normalization

Another "between layers" layer that is quite popular is Batch Normalization. This technique really helps with vanishing or exploding
gradients. So it is better with deeper networks.

• Maybe not so compatible with Dropout, but the subject of research (and debate).

• Maybe Apply Dropout after all BN layers: https://arxiv.org/pdf/1801.05134.pdf

• Before or after non-linear activation function? Oddly, also open to debate. But, it may be more appropriate after the activation function if
for s-shaped functions like the hyperbolic tangent and logistic function, and before the activation function for activations that result in
non-Gaussian distributions like ReLU.

How could we apply it before of after our activation function if we wanted to? We haven't been peeling our layers apart, but we can micro-
manage more if we want to:

model.add(tf.keras.layers.Conv2D(64, (3, 3), use_bias=False))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation("relu"))

model.add(tf.keras.layers.Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(tf.keras.layers.LeakyReLU(alpha=0.2))
model.add(tf.keras.layers.BatchNormalization(momentum=0.8))

There are also normalizations that work on single samples instead of batches, so better for recurrent networks. In TensorFlow we have
Group Normalization, Instance Normalization and Layer Normalization.

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape(60000, 28, 28, 1)
test_images = test_images.reshape(10000, 28, 28, 1)
train_images, test_images = train_images/255, test_images/255

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28,28,1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01, momentum=0.9), loss='sparse_categorical_crossentropy', metrics=['accuracy'])

model.fit(train_images, train_labels, batch_size=32, epochs=10, verbose=1, validation_data=(test_images, test_labels))

Trying Batch Normalization

....

....
Epoch 15/15
60000/60000 [==============================] - 50s 834us/sample - loss: 0.0027 - accuracy: 0.9993 - val_loss: 0.0385 - val_accuracy: 0.9891

Not So Helpful

Batch Normalization CNN

model.summary()

Layer (type) Output Shape Param #
===
conv2d_2 (Conv2D) (None, 26, 26, 32) 320

batch_normalization (None, 26, 26, 32) 128

conv2d_3 (Conv2D) (None, 24, 24, 64) 18496

max_pooling2d_1 (None, 12, 12, 64) 0

batch_normalization_1 (None, 12, 12, 64) 256

flatten_1 (Flatten) (None, 9216) 0

dense_2 (Dense) (None, 128) 1179776

batch_normalization_2 (Batch (None, 128) 512

dense_3 (Dense) (None, 10) 1290
===
Total params: 1,200,778
Trainable params: 1,200,330
Non-trainable params: 448

Score Thus Far

FC (64,64) 97.5

FC (512,512) 98.2

FC (521,512,512) 98.0

CNN (1 layer) 98.7

CNN (2 Layer) 99.0

CNN with Dropout 99.2

Batch Normalization 98.9

Real Time Demo

This amazing, stunning, beautiful demo from Adam Harley (now just across campus) is very similar to
what we just did, but different enough to be interesting.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

It is worth experiment with. Note that this is an excellent demonstration of how efficient the forward
network is. You are getting very real-time analysis from a lightweight web program. Training it took
some time.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Style vs. Content
Deep Dream Generatorhttps://deepdreamgenerator.com/feed

Keras example at
https://keras.io/examples/deep_dream/

Loads a pre-trained ImageNet model!
This is a valuable capability.

https://deepdreamgenerator.com/feed
https://keras.io/examples/deep_dream/

Inference Is Fast

Perceptual Labs

iPhone Demo

Everyone Doing Specialized Hardware

NVIDIA
Volta/Turing
Tensor Cores

4x4 matrix mixed precision matrix
multiply machines. 125 FP16
TFlops.

Google
TPU

Cloud TPU v3
420 teraflops
128 GB HBM.

Intel
Loihi

Neuromorphic
IBM, ...

128-core, 130,000 artificial
neurons, and 130 million
synapses + 3 managing
Lakemont cores.

Also new AVX512_VNNI
(Vector Neural Network)
instructions like an FMA
instruction for 8-bit
multiplies with 32-bit
accumulates on new
processors.

Brain only uses
20W.

Analog, pruning,
spiking, lots of
new directions.

We are also
continuously
learning how little
we know about
how biological
mechanisms work.

Adding TensorBoard To Your Code

TensorBoard is a very versatile tool that allows us multiple types of insight into our TensorFlow codes. We need only
add a callback into the model to activate the necessary logging.

...

...

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='TB_logDir', histogram_freq=1)

history = model.fit(train_images, train_labels, batch_size=128, epochs=15, verbose=1,
validation_data=(test_images, test_labels), callbacks=[tensorboard_callback])

...

...

TensorBoard runs as a server, because it has useful run-time capabilities, and requires you to start it separately, and to
access it via a browser.

Somewhere else:

tensorboard --logdir=TB_logD

Somewhere else:

Start your Browser and point it at port 6006: http://localhost:6006/

TensorBoard Analysis
The most obvious thing we can do is to look at our training loss. Note that TB is happy to do this in real-time as the
model runs. This can be very useful for you to monitor overfitting.

Our First Model
64 Wide FC Our CNN

TensorBoard Graph Views

And we can drill down.

We can explore the architecture of the deep learning graphs we have constructed.

Our First Model
64 Wide FC

Our CNN Our CNN's
FC Layer

Keras
"Conceptual

Model"
View

of CNN

TensorBoard Parameter Visualization

And we can observe the time evolution of our
weights and biases, or at least their
distributions.

This can be very telling, but requires some
deeper application and architecture dependent
understanding.

Histogram View

Distribution View

TensorBoard Add Ons
TensorBoard has lots of extended capabilities. Two particularly useful and powerful ones are Hyperparameter Search and
Performance Profiling.

Hyperparameter Search

Performance Profiling

Requires some scripting on your part. Look at
https://www.tensorflow.org/tensorboard/hyperparameter_t
uning_with_hparams for a good introduction.

Going beyond basics, like IO time, requires integration of hardware
specific tools. This is well covered if you are using NVIDIA, otherwise
you may have a little experimentation to do. The end result is a user
friendly interface and valuable guidance.

Scaling Up
You may have the idea that deep learning has a voracious appetite for GPU cycles. That is absolutely the case, and the leading edge of research
is currently limited by available resources. Researchers routinely use many GPUs to train a model. Conversely, the largest resources demand
that you use them in a parallel fashion. There are capabilities built into TensorFlow, the MirroredStrategy.

strategy = tf.distribute.MirroredStrategy()
with strategy.scope():

model = tf.keras.Sequential([
tf.keras.layers.Dropout(rate=0.2, input_shape=X.shape[1:]),
tf.keras.layers.Dense(units=64, activation='relu'),
...

])
model.compile(...)

model.fit(...)

MNIST with Horovod!

Horovod: initialize Horovod.
hvd.init()

Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))
...
Horovod: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(12.0 / hvd.size())
...
Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())
...
Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)
...
model.compile(loss=keras.losses.categorical_crossentropy,optimizer=opt,metrics=['accuracy'])

callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0),]
if hvd.rank() == 0: callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))

Horovod: fast and easy distributed deep learning in TensorFlow

Alexander Sergeev, Mike Del Balso

You can find a full example of using Horovod with a Keras MNIST code at:
https://horovod.readthedocs.io/en/latest/keras.html

An alternative that has proven itself at extreme scale is Horovod.

https://horovod.readthedocs.io/en/latest/keras.html

Scaling Up Massively

Horovod demonstrates its excellent scalability with a Climate Analytics code that won the Gordon Bell prize in 2018. It
predicts Tropical Cyclones and Atmospheric River events based upon climate models. It shows not only the reach of
deep learning in the sciences, but the scale at which networks can be trained.

Exascale Deep Learning for Climate Analytics

Kurth, et. al.

• 1.13 ExaFlops (mixed precision) peak training performance

• On 4560 6 GPU nodes (27,360 GPUs total)

• High-accuracy (harder when predicting "no hurricane today" is
98% accurate), solved with weighted loss function.

• Layers each have different learning rate

Other Tasks And Their Architectures

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

• Classification (What we did)
• Localization (Where is the digit?)
• Detection (Are there digits? How many?)
• Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin, and we would use some
other building blocks.

We don't have a Day 3, but we do have a good foundation to at least introduce the other important building blocks in
current use.

Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

• Fully Connected (FC)
• Convolutional (CNN)
• Residual (ResNet) [Feed forward]
• Recurrent (RNN), [Feedback, but has vanishing gradients so...]
• Long Short Term Memory (LSTM)
• Transformer (Attention based)
• Bidirectional RNN
• Restricted Boltzmann Machine
•

•

Several of these are particularly common...

Wikipedia Commons

Residual Neural Nets

• Helps preserve reasonable gradients for very deep networks
• Very effective at imagery
• Used by AlphaGo Zero (40 residual CNN layers) in place of previous

complex dual network
• 100s of layers common, Pushing 1000

We've mentioned that disappearing gradients can be an issue, and we know that deeper networks are more powerful.
How do we reconcile these two phenomenae? One, very successful, method is to use some feedforward.

Haven't all of our Keras networks been built as strict layers in a sequential method? Indeed, but Keras supports a
functional API that provides the ability to define network that branch in other ways. It is easy and here
(https://www.tensorflow.org/guide/keras/functional) is an MNIST example with a 3 dense layers.

More to our current point, here (https://www.kaggle.com/yadavsarthak/residual-networks-and-mnist) is a neat
experiment that uses 15(!) residual layers to do MNIST. Not the most effective approach, but it works and illustrates
the concept beautifully.

Courtesy: Chris Olah

#Example: input 3-channel 256x256 image
x = Input(shape=(256, 256, 3))
y = Conv2D(3, (3, 3))(x)
z = keras.layers.add([x, y])

https://www.tensorflow.org/guide/keras/functional

Recurrent Networks (RNNs)

If feedforward is useful, is there a place for feedback? Indeed, it is currently at the center of the many of the most
effective techniques in deep learning.

Courtesy: Chris Olah

Many problems occur in some context. Our MNIST characters are just pulled from a hat. However most character
recognition has some context that can greatly aid the interpretation, as suggested by the following - not quite true -
text.

"Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny
iprmoatnt tihng is taht the frist and lsat ltteers be at the rghit pclae. The rset can be a toatl mses and you can sitll raed
it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe."

To pick a less confounding example. The following smudged character is pretty obvious by its context. If our network
can "look back" to the previous words, it has a good chance at guessing the, otherwise unreadable, "a".

LSTMs

Wikipedia CommonsWikipedia Commons

This RNN idea seems an awful lot like "memory", and suggests that we might actually incorporate a memory into
networks. While the Long Short Term Memory (LSTM) idea was first formally proposed in 1997 by Hochreiter and
Schmidhuber, it has taken on many variants since. This is often not explained and can be confusing if you aren't aware. I
recommend "LSTM: A Search Space Odyssey" (Greff, et. al.) to help.

Wikipedia Commons

The basic design involves a memory cell, and some method of triggering a forget. tf.keras.layers.LSTM takes care of the
details for us (but has a lot of options).

The Keras folks even provide us with an MNIST version (https://keras.io/examples/mnist_hierarchical_rnn/), although I
think it is confusing as we are now killing a fly with a bazooka.

I recommend https://keras.io/examples/conv_lstm/, which uses network is used to predict the next frame of an artificially
generated movie which contains moving squares. A much more natural fit.

https://keras.io/examples/mnist_hierarchical_rnn/
https://keras.io/examples/conv_lstm/

Bi-directional LSTMs

Wikipedia CommonsWikipedia Commons

Often, and especially in language processing, it is helpful to see both forward and backward. Take this example:

Wikipedia Commons

model = tf.keras.Sequential([
tf.keras.layers.Embedding(encoder.vocab_size, 64),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return_sequences=True)),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(1)

])

Is the dog chasing a cat, or a car? If we read the rest of the sentence, it is obvious:

Adding even this very sophisticated type of network is easy in TF. Here is the network definition from the Keras IMDB
movie review sentiment analysis example (https://www.tensorflow.org/tutorials/text/text_classification_rnn).

The first, embedding, layer introduces the concept of word embeddings - of central importance to any of you
interested in natural language processing, and related to our running theme of dimensionality reduction. To
oversimplify, here we are asking TF to reduce our vocabulary of vocab_size, so that every word's meaning is
represented by a 64 dimensional vector.

Autoencoder

Input Layer Hidden Layers Output Layer

Autoencoder

Input Layer Output Layer

Latent Features

Autoencoder

Input Layer Output Layer

Latent Features

This autoencoder concept is very
foundational.

It can be used for powerful generational
networks by controlling the latent space
as in variational autoencoders.

Or it can be a conceptual block in more
complex designs like transformers.

Deepfake Training

Latent Features

Alice

Bob

Deepfake At Work

Latent Features

Alice
Bob

Zao Does DiCaprio
The Chinese app Zao did the below in 8 seconds from one photo.

twitter.com/AllanXia/status/1168049059413643265

https://twitter.com/AllanXia/status/1168049059413643265

Architectures

AlexNet

With these layers, we can build countless different networks (and use TensorFlow to define them). Again, this is "3rd

day" material, but we present them here and you should feel competent to research them yourself.

Wikipedia Commons

GoogLeNet / Inception

Generative Adversarial Network
(GAN)

YOLO (You Only Look Once)

Mask R-CNN

Images from original papers

Data Augmentation

As I've mentioned, labeled data is valuable. This type of supervised learning often requires human-labeled data.
Getting more out of our expensive data is very desirable. More datapoints generally equals better accuracy. The
process of generating more training data from our existing pool is called Data Augmentation, and is an extremally
common technique, especially for classification problems.

Our MNIST network has learned to recognize very uniformly formatted characters:

What if we wanted to teach it:

You can see how straightforward and mechanical this is. And yet very effective. You will often see detailed
explanations of the data augmentation techniques employed in any given project.

Note that tf.image makes many of these processes very convenient.

Scale Invariance Rotation Invariance Noise Tolerance Translation Invariance

Learning Approaches

Supervised Learning
How you learned colors.
What we have been doing just now.
Used for: image recognition, tumor identification, segmentation.
Requires labeled data.
Lots of it. Augmenting helps.

Reinforcement Learning
How you learned to walk.
Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
Used for: Go (AlphaGo Zero), robot motion, video games.
Don't just read data, but interact with it!

Unsupervised Learning
(Maybe) how you learned to see.
What we did earlier with clustering and our recommender, and Deepfake.
Find patterns in data, compress data into model, find reducible representation of data.
Used for: Learning from unlabeled data.

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

“Theoretician’s Nightmare”

That is paraphrasing Yann LeCun, the godfather of Deep Learning.

If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon results groundbreaking papers of a few
years ago.

My own humble observation: Deep Learning looks a lot like late 19th century chemistry. There is a weak theoretical
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more
perspiration than inspiration."

You Now Have A Toolbox

The reason that we have attempted this ridiculously ambitious workshop is that the field has reached a level of
maturity where the tools can encapsulate much of the complexity in black boxes.

One should not be ashamed to use a well-designed black box. Indeed it would be foolish for you to write your own
FFT or eigensolver math routines. Besides wasting time, you won’t reach the efficiency of a professionally tuned tool.

On the other hand, most programmers using those tools have been exposed to the basics of the theory, and could dig
out their old textbook explanation of how to cook up an FFT. This provides some baseline level of judgement in using
tools provided by others.

You are treading on newer ground. However this means there are still major discoveries to be made using these tools
in fresh applications.

One particularly exciting aspect of this whole situation is that exploring hyperparameters has been very fruitful. The
toolbox allows you to do just that.

Other Toolboxes
You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

TensorFlow Neural Nets Python, C++ Very popular.

Caffe Neural Nets Python, C++ Caffe2 rolled into PyTorch.

Spark MLLIB Classification, Regression,
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in
serious applications. Lots of
plugins to DL frameworks:
TensorFrames, TF on Spark,
CaffeOnSpark, Keras Elephas.

Scikit-Learn Classification, Regression,
Clustering

Python Integrates well with TF to create
powerful workflows.

cuDNN Neural Nets C++, GPU-based Used in many other frameworks:
TF, Caffe, etc.

Theano Neural Nets Python Lower level numerical routines.
NumPy-esque. Kinda obsolete.

PyTorch (Torch) Neural Nets Python (Lua) Popular. Was dynamic graphs,
eager execution (now in TF).

Keras Neural Nets Python (on top of TF, Theano) Now completely absorbed into
TF.

Digits Neural Nets “Caffe”, GPU-based Used with other frameworks
(only Caffe at moment).

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

mnist = input_data.read_data_sets(".", one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

x_image = tf.reshape(x, [-1,28,28,1])

W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))

train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
test accuracy 0.9915

TensorFlow 1 Version

32 kernel, 5x5 convolutional layer with 2x2 pooling.

def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():

for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))

def main():
Bunch of parsed training inputs...
....
torch.manual_seed(args.seed)

device = torch.device("cuda" if use_cuda else "cpu")

kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(

datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([

transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

])),
batch_size=args.batch_size, shuffle=True, **kwargs)

test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([

transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))

])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):

train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step()

if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")

if __name__ == '__main__':
main()

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output

def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):

data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:

print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))

PyTorch CNN MNIST

Not a fair comparison of terseness as this version has a
lot of extra flexibility.

From:
https://github.com/pytorch/examples/blob/master/mnist/main.py

https://github.com/pytorch/examples/blob/master/mnist/main.py

Scikit-learn

import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
plt.figure()
plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
plt.xticks([]); plt.yticks([])
plt.title(title)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.))

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)
draw(X_tsne, "t-SNE Embedding")

plt.show()

Return To DR With Scikit-learn

Exercises
We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away. Of
course everything we have done is standard and you can work on these problems in any reasonable environment.

You may have wondered what else was to be found at tf.keras.datasets. The answer is many interesting problems. The
obvious follow-on is:

Fashion MNIST

These are 60,000 training images, and 10,000 test
images of 10 types of clothing, in 28x28 greyscale.
Sound familiar? A more challenging drop-in for MNIST.

More tf.keras.datasets Fun

Boston Housing Predict housing prices base upon crime, zoning, pollution, etc.

CIFAR10 32x32 color images in 10 classes.

CIFAR100 Like CIFAR10 but with 100 non-overlapping classes.

IMDB 1 sentence positive or negative reviews.

Reuters 46 topics in newswire form.

I have been known to fall asleep during films, but this...

Mann photographs the Alberta Rocky Mountains in a superb fashion...

Its december acquisition of space co it expects earnings per share in 1987 of 1 15 to 1 30 dlrs per share up from

70 cts in 1986 the company said pretax net should rise to nine to 10 mln dlrs from six mln dlrs in 1986 and rental

operation revenues to 19 to 22 mln dlrs from 12 5 mln dlrs it said cash flow per share this year should be 2 50 to

three dlrs reuters...

Endless Exercises
Kaggle Challenge
The benchmark driven nature of deep learning
research, and its competitive consequences, have
found a nexus at Kaggle.com. There you can find
over 20,000 datasets:

and competitions:

Including this one:

Demos
Ray-traced videogames soon? Recurrent CNN.

http://research.nvidia.com/sites/default/files/publications/dnn_denoise_author.pdf

Demos & Discussion

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 – Published 12 January 2018

A wise man once (not that long ago) told me "John, I don't
need a neural net to rediscover conservation of energy."

Demos
Style vs. Content: A little more subtle

Grab it at https://github.com/NVIDIA/FastPhotoStyle

Tomorrow
If Only...

Nice video at
http://stylegan.xyz/video

What is reality?

Where did they get their hyperparameters?

...

...

